

Development of Chemiluminescent Probes for Detecting Reactive Oxygen Species

 $\mathbf{R1}$

Siu Tsz Ho, Brian (Major: Chemistry Intensive) Prof. D Yang Lab, Department of Chemistry, The University of Hong Kong

Introduction

Generated as the byproducts of respiration, reactive oxygen species (ROS) are reduced form of dioxygen that can act as signaling molecules in organisms, such as O_2^{-1} , H_2O_2 , OH_2 , HOCI etc. However, at high concentrations, ROS would damage cells and organs, eventually leading to cell death and a wide range of diseases, such as cancer and asthma. Hence, real-time monitoring of ROS with molecular probes can unravel the pathogenesis of diseases and aid the development of drug development.

Results

(i) HOCI Probe:

HOCI-DF-510 and HOCI-DF-540 consist of three major components: HOCI reaction site, linker and the chemiluminophore. Upon reaction with HOCI, the reaction site and linker will self-immolate and activates the chemiluminophore.

Figure 1: Production of ROS in cells

Fluorescent probes have traditionally been used for ROS imaging in living cells and organisms since it can be turned on easily. However, applications of fluorescent probes are limited due to autofluorescence and scattering issues.

Figure 3: Switch and fluorophore adopted in design of ROS fluorescent probes

Figure 2: Fluorescent imaging of ROS in zebrafish embryo

Figure 4: Illustration of scattering and autofluorescence.

Recently, turn-on chemiluminescent probes ROS for detection are synthesized based on Schaap's adamantivlidene-1,2-dioxetane for real-time in vitro and in vivo ROS detection. They do not require external excitation and

Scheme 3: General working principle of HOCI-DF-510 and HOCI-DF-540

Parallel synthesis of the chemiluminophore precursor (7) and the linker plus reaction site is adopted. The HOCI reaction site (red) is first coupled with a newly designed linker (blue), and introduced to the chemiluminophore (black) via an $S_N 2$ reaction. Singlet oxygen insertion and protecting group removal are conducted in the end.

Scheme 4: Synthesis of chemiluminophore precursor (7)

can emit light once cleaved by the ROS substrate. They also exhibit high signal-to-noise ratio and improved tissue-penetration ability, which can serve as an alternative for traditional fluorescent probes in *in vivo* ROS detection.

Figure 4: In vivo imaging and chemiluminescent measurements of DSD-4, a chemiluminescent probe

cells.

In this work, the author reports two newly designed chemiluminescent probes for HOCI detection (HOCI-DF-510, HOCI-DF-540) and one probe for O_2^{-1} detection $(O_2, -540)$. Preliminary chemiluminescent tests are also carried out to evaluate the kinetics and performance of the probes.

(ii) O_2^{-} probe:

 O_2 -540 consist of only the O_2^{-} reaction site and the chemiluminophore because the reaction is less affected by sterics. The same convergent approach is adopted as described in the HOCI probe. The O_2^{-} reaction site is first synthesized, and then linked to 7. Finally, singlet oxygen insertion is conducted.

- HOCI: Elevated levels associated with rheumatoid arthritis & autoimmune diseases; promote drug chemotherapy when delivered precisely.
- O_2 : One of upstream ROS. Secondary products induces inflammation, cancer etc. Elevated levels associated with damage of Fe-S proteins and

Two newly designed chemiluminescent probes for HOCI detection (HOCI-DF-**510, HOCI-DF-540)** and one probe for O_2^{-1} detection (O_2^{-1} -540) are designed and synthesized. Preliminary time scans have hinted that chemiluminescent probes with methyl ester moiety in the chemiluminophore only exhibit mediocre turn-on response. Further chemiluminescent tests shall be scheduled to fully explore the probe kinetics and sensitivity.

References

Auten, R. L., & Davis, J. M. (2009). Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric research, 66(2), 121-127.

Green, O., Eilon, T., Hananya, N., Gutkin, S., Bauer, C. R., & Shabat, D. (2017). Opening a gateway for chemiluminescence cell imaging: Distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS central science, 3(4), 349-358.

Gnaim, S., Green, O., & Shabat, D. (2018). The emergence of aqueous chemiluminescence: new promising class of phenoxy 1, 2-dioxetane luminophores. Chemical Communications, 54(17), 2073-2085.

Hananya, N., Eldar Boock, A., Bauer, C. R., Satchi-Fainaro, R., & Shabat, D. (2016). Remarkable enhancement of chemiluminescence probes with color modulation for sensing and imaging. Journal of the American Chemical Society, 138(40), 13438-13446.

Jiao, X., Li, Y., Niu, J., Xie, X., Wang, X., & Tang, B. (2018). Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Analytical chemistry, 90(1), 533-555.

Marshall, J., & Johnsen, S. (2017). Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1724), 20160335.

Ryan, L. S., Gerberich, J., Cao, J., An, W., Jenkins, B. A., Mason, R. P., & Lippert, A. R. (2019). Kinetics-based measurement of hypoxia in living cells and animals using an acetoxymethyl ester chemiluminescent probe. ACS sensors, 4(5), 1391-1398. Sullivan, L. B., & Chandel, N. S. (2014). Mitochondrial reactive oxygen species and cancer. Cancer & metabolism, 2(1), 1-12.

Ye, S., Hananya, N., Green, O., Chen, H., Zhao, A. Q., Shen, J., ... & Yang, D. (2020). A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angewandte Chemie International Edition, 59(34), 14326-14330.

Ye, S., Yang, B., Wu, M., Chen, Z., Shen, J., Shabat, D., & Yang, D. (2021). Recurring Real-Time Monitoring of Inflammations in Living Mice with a Chemiluminescent Probe for Hypochlorous Acid. CCS Chemistry, 2181-2188. Chicago Yin, X., Feng, W., Gong, S., & Feng, G. (2020). Near-infrared fluorescent probe with rapid response and large Stokes shift for imaging peroxynitrite in living cells, zebrafish and mice. Dyes and Pigments, 172, 107820. Yuan, G., Ding, H., Sun, H., Zhou, L., & Lin, Q. (2019). A mitochondrion-targeting turn-on fluorescent probe detection of endogenous hydroxyl radicals in living cells and zebrafish. Sensors and Actuators B: Chemical, 296, 126706.